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V E Rochev 
Institute for High Energy Physics, 142284 hotvino, Russia 

Received 7 April 1992 

Abbact. Tbe Strong coupling expansion (SCE) for the generating functional of the Green 
functions in the (q*q)?, model is investigated by the method of Schwinger equations. No 
lattices are used. The problem of boundary conditions is discussed. The exact (in all orders 
of SCE) relation between the two-particle function and the propagator has been obtained. 
From this relation the equation for the propagator is obtained. In the lower order this 
equation coincides with the known gap equation. A modification of the second Legendre 
transformation in the SCE region is presented. 

1. Iutroduction 

Perturbation theory is, so far, the only universal method used to calculate Green 
functions in quantum field theory. 

The majority of physical applications, however, require going beyond the framework 
of perturbation theory. In this respect, a considerable interest is excited by the problem 
which is, somehow, inverse to the perturbation theory. This problem is the limit of 
strong coupling, i.e. expansion of Green functions in negative power series of the 
coupling constant. The problem has repeatedly been investigated ~(Hori 1962, Kaiser 
1976, Ward 1978, Bender et al 1979, 1981). The feature common to all these investiga- 
tions is the use of the lattice approximation to calculate the non-Gaussian path integrals. 
However, it is far from being easy to pass over to the continuous limit. Such a transition 
causes difficulties which are hard to overcome even in the case of simple models. The 
formal expressions obtained contain, as a rule, singular coefficients like S(O), whose 
presence makes the performance of the renormalization program much more compli- 
cated. Besides, the propagator of the particle A(x) in the finite order of SCE is a function 
localized at the point x = 0: 

A(n)( x) = P,-l(d2)8( x). (1.1) 
Here P. means a polynomial. Equation (1.1) can hardly be interpreted as a propagator. 

To obtain physically understandable Green functions, one has to sum over the SCE. 
Let us illustrate this idea by a simple example. Consider the theory of a scalar field 

(D with the mass m and the quadratic interaction Zint =pzqz. For this exactly soluble 
model, the SCE i.e. the expansion in the inverse powers of p2, is non-trivial and has 
property (1 .1) .  For the propagator 

in the nth order we have 
A"')(x) = ( -m2+82)"-'8(x)  
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(in the Euclidean metric). In any finite order of 1/p*, the propagator in this simple 
model is the function with support at the point x = 0. However, the summation over 
all orders of l/p2 gives the right answer 

whose interpretation is transparent. So, it is  natural to suppose that in non-trivial 
models, physically sensible results are obtained only after summing up the SCE. This 
type of summation may, in a sense, be advantageous against the summation of a 
perturbation series. The reasons are, first, that the SCE has a simpler combinatorial 
structure in virtue of its polynomiality with respect to the sources; second, this expansion 
may have better convergence properties (the perturbation series is, at most, asymptotic). 

The subject of the present paper is the investigation of the SCE for the scalar field 
theory with quartic interaction without exploiting the lattice. Underlying our investiga- 
tion is the method of the iterative solution ofthe Schwinger equations for the generating 
functionalt. In the next section, the iterative scheme for the strong coupling is formu- 
lated, and its general properties are discussed. The central point in constructing the 
SCE on the basis of the Schwinger equations is the boundary conditions problem. The 
SCE, unlike the iterative scheme of perturbation theory, requires that the functional 
differential equations with order higher than one, be solved. As a consequence, there 
arises an urgent need to have additional boundary conditions (which, generally, seems 
to be typical for non-perturbative approximations). Therefore, in constructing the SCE 
on the basis of the Schwinger equation, the propagator A in each finite order of the 
SCE should be understood as a boundary condition (input). To define the propagator, 
it is obligatory to use an alternative boundary condition, which, in turn, requires that 
the summation of the SCE be done. 

A distinctive feature of the SCE is its polynomiality in the sources. This allows 
derivation of the exact relation (i.e. summed over all orders of the SCE relation), 
connecting a two-particle Green function with the propagator. This relation will be 
obtained in section 3. Then, proceeding from this relation and the requirement for 
consistency with perturbation theory, we obtain an approximate equation for the 
propagator (section 4). This equation coincides with the known gap equation for the 
given model, although it has been derived in a different way and is based on 
the summation of the SCE. 

Section 5 discusses the Legendre transformation of the generating functional. A 
way to modify the Legendre transformation in the strong coupling region is proposed. 
Within this modification, the strong coupling gap equation for the propagator is derived. 
This equation is exact in the limit A + m, contrary to the ordinary (weak coupling) gap 
equation, which is exact at A -f 0. 

As an illustration to the above constructions, section 6 considers the so-called 
single-mode approximation (Cant and fivers 1980), or, equivalently, the theory in 
0-dimensional space. 

Throughout the paper, the accent is laid on the properties of the SCE. In this 
connection, the well known gap equation physics is not discussed here. We also ignore 
the contribution from topologically non-trivial configurations and the related effects. 

t The problem of the determination of the SCE from the Schwinger equations was investigated also by 
Bender el 01 (1989). 
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2. Schwioger equations and strong coupling expansion 

Consider the complex scalar field ~ ( x )  in the d-dimensional Euclidean space (x E E d )  

with the self-action A/Z((o*rp)’. The generating functional of the Green functions for 
the model is: 

A 
-- 2 dx(rp*(x)rp(x))’). (2.1) 

Here N is the constant specified by the normalization condition G[O] = 1. The kernel 
of the quadratic form of the free action is the inverse free propagator ’lo = mz - dZ = A;‘. 
The derivatives of G with respect to the bilocal source 11 determine the Green functions: 

(i) the one-particle Green function (propagator): 

(2.2) 

(ii) the two-particle (four-point) Green function: 

etc. 

equations for the generating functional G: 
The translation invariance of the path integration measure leads to the Schwinger 

Equation (2.4a) may be recast in the form 

(2.4a) 

(2.46) 

Similarly, one can write down (2.46). From (2.5) one can easily derive the expansion 
of G into the power series of A, choosing for the zero-order approximation the functional 

Go=exp{-tr In(l+ vv;’)}. (2.6) 

Notice that the generating functional G has to simultaneously obey two equations- 
(2 .4~)  and (2.4b). This is not essential for the perturbation theory, but may turn out 
important in the non-perturbative approach. For example, the functional 

e w  - dxl dxz dx3(vo(xlxJ + v(xIxJ)(v0(xIxd+ v(x,xd)) I:, I 
is the solution of (2.4a), but does not satisfy (2.4b). 
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In order to obtain the expansion of the generating functional (2.1) in inverse power 
series of the coupling constant, let us redefine the integration variables in the path 
integral: 'p -+ A-'I''p, 'p* + A- 'l4'p*, and expand in a series the exponent of the quadratic 
form 

~ c p  DP* ew{-A-''2'p*(qo+ VIP -Hlp*rp)3 

Equation (2.7) describes the SCE of the generating functional G in the language of the 
path integral. Note the fact that the term of order A-"'2 in the SCE is a polynomial of 
degree n in the source q. This essentially distinguishes the SCE from the perturbation 
expansion. In the latter, each term of the expansion in A (starting with equation (2.6)) 
is non-polynomial in q. 

Turn now to the Schwinger equations (2.4). Expanding G in a power series of 
A-'/' as: 

(2.8) G = G(o)+ A-!/ZG(l) + A-lG(2) + , , , 

we get the iterative schem of the SCE 

Equations (2.9) have to be completed by boundary conditions. One such condition 
is the normalization condition 

G[Ol= 1 (2.10) 

G'"[O] = 1 G'"[O] = 0 n > O .  (2.11) 

whence it follows that 

In the iterative scheme of the perturbation theory, described by ( U ) ,  the boundary 
condition suffices to define completely the generating functional in any order of A, 
because the corresponding equations are always first-order equations with respect to 
the functional derivatives. In the strong coupling scheme, however, one has to solve 
second-order equations. This is why one more boundary condition is required to be 
set. It would be natural to set the derivative which in our case i s  the simplest Green 
function, i.e. propagator (2.2). Therefore, to boundary conditions (2.11) one has to 
add the boundary condition 

(2.12) 

with A'"' standing for the nth term of the expansion of the propagator in A-'": 
A =  A-l/2*(:'+A-'*(2)+, . , (2.13) 

The requirement to introduce an additional boundary condition into the iterative 
scheme of the Schwinger equations makes one more serious distinction between the 
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SCE and perturbation theory. Therefore, in each order of A-'", G'"' is the functional 
of not only the source q, but of the propagator as well: G'"'= G'"'[q, A]. The solution 
of the equations of the iterative scheme of the strong coupling defines the Green 
functions as the functionals of the propagator. Therefore, in the construction of the 
SCE on the basis of the Schwinger equations, the propagator A should be understood 
not as an output, but as a boundary condition (input). To define the propagator, one 
has either to calculate a non-Gaussian path integral on the basis of the lattice approxi- 
mation, accompanying with are the above difficulties of passing to a continuous limit, 
or use instead some alternative boundary condition. This boundary condition may, for 
instance, be consistent with perturbation theory: 

G=G, 
at q +W. However, it is not possible to introduce such a boundary condition directly, 
since, as has already been stated, each term of the SCE is polynomial in q. The use of 
this (or similar) additional boundary condition becomes possible only after the comple- 
tion of the, summation of the SCE. The problem of boundary conditions is the key 
problem in constructing the SCE by the method of Schwinger equations (problems of 
this kind are, in general, typical of non-perturbative constructions, Cant and Rivers 
1980). It is necessary to emphasize that a calculation of non-Gaussian path integrals 
solves the problem of unique SCE construction. This can be illustrated by a toy model 
of quantum field theory in 0-dimensional space (see later, section 6) .  Convergence of 
the integral plays the role of the additional boundary condition. In this sense, Schwinger 
equations (2.4) have less information in the non-perturbative region than the integral 
in (2.1). 

Consider now the system of equations (2.9) in greater detail. As was stated above, 
the nth term of the iterative expansion (2.9) is a polynomial of degree n in q: 

with GV'=O(q*) .  In accordance with (2.11) and (2.12) 
G(")= G'.")+ ~'."t+. . .+GI")+ CY 

when n > 0. At k >  1, the monomial GP' satisfies the equations 

(2.14) 

with homogeneous boundary conditions. 

homogeneous equations: 
The first two terms of expansion (2.8) are, factually, trivial. They both satisfy the 

(the same equation is true for G(')). From the boundary condition (2.11) one finds 
that G'" = 1. The 0''' is sought for in the form 

G") = G'," = C dx, dx, q(xlx2)A,(alx, + a2x2). 

The boundary condition (2.12) yields C = -1, a, = -a2 = -1, and 
G") = -tr ,,A(,', 
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The first non-trivial term of expansion (2.8) is 
&2)+ 0 ' 2 )  - 1 '  

From the boundary condition (2.12) it follows that 
G(2) - - I - tr ?A('' 

(generally, in all orders GI"'= -tr ?A.). 
The term CY' is the solution of the equations 

= S(x -y) 
SZG(2) 2 SZGi2' 

wYx)S?(=) = S?(YX)S?(YY) 

S2G, S'G, 
S l l ( y x ) h ( = )  =S?l(Yx)S?(YY) 

with homogeneous boundary conditions. 
Solve now the general system of equations: 

=f (x-y)  

with an arbitrary function f ( x ) .  
The solution is looked for in the form: 

G,= C dx,. . .dx ,~(x ,x2) . r l (x3x, ) f (a ,x ,+a lx l+a3x,+a,x , ) .  

From (2.15) one obtains the values for the indeterminate coefficients: 

I 
c =! 2 .  a, = -a,= a)= -ad= -1 

So, the solution for (2.15) will be: 

(2.15) 

(2.16) 

, 
G, = 4 J dx, . . . dx, ?(x,x2)n(x3x4)f(-x, + xz - x3 + x4) + (?, (2.17) 

where Gf is a general solution of the corresponding system of homogeneous equations. 

3. Two-particle function 

Solution (2.17) allows calculation of the two-particle Green function (2.3) in all orders 
of the power expansion of Indeed, to calculate the two-particle function, it 
suffices to know GI"' for any n According to (2.14), GI"' at n > 2  is the solution of 
the system of equations 

SZG:") 62G:D) 
~?(YX)S?(Xx) = S?(YX)S?(YY) 

= -1 dx, ~o(n,)A'"-2'(x, - y )  

= - dx, A ' n - 2 ) ( ~ - ~ l ) ~ O ( ~ l y ) .  (3.1) 

This system of equations can be referred to type (2.15) and, hence, its solution is given 
by formula (2.17) withf=-(m2-8?)A("-'). 
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Bring in the functional 

which is nothing but a part of the generating functional G quadratic in q. From 
formulae (2.17) and (3.1) it is possible to calculate G2: 

G -- dx,. . . d x ~ q ( x ~ x z ) q ( x ~ x ~ ) g ( - x ~ + x z - x ~ + x ~ ) + ~ z  
‘ - A  ‘I 

where 

= S ( x ) - ( m ’ - a Z ) A ( x )  

and d, = O(q2) is a solution of the system of homogeneous equations 

S’d 8% 

8ll (yx)S7(xx)  =8rl(Yx)870’JJ)=o. 

So, one comes to the exact expression for the two-particle function: 

5= Fs+ 9 

(3.2) 

(the index S here means that the function is extracted from the SCE of the Schwinger 
equations). The function 9 here satisfies the conditions 

Gyxxlyx)  = Q ( x y l y y )  = 0. (3.4) 

Also, g must satisfy the physical requirements of the Bose-symmetry and the translation 
invariance: 

.qxx’ lyy’ )  = 9 ( x ‘ x I y y ‘ )  = g(xx ’ ly ’y )  

.qx - 2, x’ - 2 I y - 2, y’ - 2) = S(xx’1yy’) .  

At A-”2+m (A + 0), expanding A = A,+.  . . , one formally obtains, from (3.3), that 
Fs=O,(l). But the formula for Fs yields nothing that would resemble an expansion 
of the perturbation theory. To obtain consistency with perturbation theory, one should 
take into account the non-trivial solutions of equations (3.4). Undoubtedly, there are 
such solutions. Thus, the solution consistent in the zeroth order of A is 

9,(xx‘~yy’) = A ( X  - y ) ~ ( ~ J - y ’ ) + ~ ( ~  - Y ~ ) A ( ~ ‘ - ~ )  - Z A ( O ) A ( ~  - y + ~ ’ - y i ) .  (3.5) 

4. Propagator 

Formula (3.3) is exact in the sense that it bas been summed over all orders of the SCE. 
Therefore, following the consideration of section 3, it turns out possible to impose, as 
an additional boundary condition, the requirement of consistency with perturbation 
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theory. Then (3.3) may be treated as an approximate equation for the propagator A. 
Call the two-particle function 

F(A)=Fs(A)+$(A) 
n-consistent with perturbation theory, provided 

S(A) = 9" 
where Sn is the perturbative approximation of the two-particle function in the nth-order 
A-perturbation theory. In the usual perturbation theory, Fv is the functional of the 
free propagator A,: 

Pm= SA&, A). 
Clearly, however, in any finite order A one can always pass from A< to the total 
propagator A: 

Fv=Fn[A,A]+O(A"+'). (4.2) 
Relation (4.1), where Sn=S, , [A] ,  can be understood to be an equation for the 

propagator A. In leading order, in accordance with (3.9, we get that 
A - l [ S ( x )  - ( m2 - a2)A(x)] = 2A(O)A(x). (4.3) 

From (4.3) one can readily obtain the expansion of the propagator in degrees of 
A-"/2. The formal expression for the first term of the expansion will then be 

A(''(x) = (28(O))-"'S(x). 
In lattice regularization, S ( 0 )  should be understood as amd, where a means the 

spacing of the lattice. The subsequent terms of the SCE can be established from the 
iterative scheme 

ll+l 

* = I  
-(m2-J2)A'"'(x)=2 E Ack)(0)A'"+2-ki(x) (4.4) 

which shows that the nth term of the expansion contains the (n - 1)th degree of the 
inverse free propagator AF'=m2-J2. A similar result is also obtained by direct 
calculations (Hori 1962, Castoldi and Schomblond 1978, Bender etal 1979), underlying 
which is the use of lattice regularization. 

Also, there is no di5iculty in finding the exact solution to equation (4.3). Going 
over to p-space, we get 

1 
b(p)=2AA(0)+ m2+p2 (4.5) 

with the constant A(0) specified by the equation 

Therefore, the 0-consistent two-particle function determines the free propagator with 
the renormalized mass 

m:e.=2AA(0)+mZ. (4.6) 
(This renormalization is infinite when d 2.) 

Equation (4.3) is, clearly, approximate for both the strong coupling region and for 
small A. It can easily be recognized as the gap equation in the Hartree-Fock-like 
approximation for the given model. Therefore, the well known Hartree-Fock appmxi- 
mation throws a bridge between SCE and the perturbation theory. 
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5. Legendre bansformation 

The approximation for the propagator, derived in the previous section from (3.3), may 
be obtained in a different way, namely by considering the second Legendre transforma- 
tion (De Dominicis 1962, Dahmen and JoM-hiniO 1967, Vassilev and Kazansky 
1972). (It would be more precise to call it a Legendre transformation with respect to 
a bilocal source, but we keep here to the conventional terminology.) Let us first pass 
from the generating functional G to its logarithm 

Z = l n G  

and introduce the functional 

~ ( 0 )  =-A.  
SZ 

u ( t l ) = -  
611 

Relation (5.1) may be considered as an equation in the source 7. If unambiguous 
solvability of relation (5.1) for q is assumed: q = ~ ( u ) ,  then U can be treated as a new 
functional variable, and so the generating functional of the second Legendre transfor- 
mation may be introduced 

SZ r(u) = Z-- 7 =z -tr UT. 
811 

As can easily be shown 

Sr 
tl. _=-  

SV 

The Schwinger equation than is written down as 

1 i (q + q 0 ) u  = A[ (gy +,,I (5.3) 

In the leading order of perturbation theory of A we have 

T , ~ , =  - (mz-Jz+  U-'). (5.4) 

Substituting (5.4) into the right-hand side of (5.3) and switching off the source, we 
obtain (4.3) for the propagator A. This is the traditional derivation of the gap equation 
(Vassilev 1976). In this derivation, the given equation is in no way related to the SCE 
(as has been done in the previous section). The analysis of section 4 reveals that the 
gap equation for the propagator is consistent with both the expansion ofthe perturbation 
theory and the SCE. When A + 0, the lower order of the perturbation theory is reproduced 
correctly. But at A -+a, the agreement is qualitative, since the subsequent approxima- 
tions are comparable in the order of magnitude with the leading one at large A. 

In this connection, let us try to construct a consistency scheme based on the SCE 
instead of perturbation theory. To this end, one will have to modify the Legendre 
transformation, since the functional U specified by formula ( 5 . 1 )  is unfit to serve as a 
new functional variable ad hoc. The SCE for the functional Z is as follows: 

Z = -A-'/' tr ?A(')+ A-'Z(')+, , , 

Let us introduce the functionals 

Z,= A(Z+tr qA) 
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and 

At A +OO, the quantities Z, and u(q) are of order unity. The boundary condition for 
u ( q )  is homogeneous: 

u(0) = 0. 

Understanding now U as the new functional variable, and (5.5) as the equation 
specifying q, let us introduce the generating functional of the Legendre transformation 
in the strong coupling region : 

SZS 
817 

(5.6) 

The generating functional r, obeys the following relation, which is completely 
analogous to the property of the ordinary Legendre transformation: 

r , (u)=Z,--~=Z,- t r  UT. 

In terms of r, and U, the Schwinger equation becomes 

1 + A - l ( q  + qo)u -(q + 7 o ) A =  ( ~ ~ ) - ' + / i - l u u + A u + u A + i A A .  - (5.7) 

In the leading order of the SCE we have 

Substituting (5.8) in (5.7) and switching off the source, we come to the equation 

(m' -$ )A(x )  + AA(O)A(x) = A ( l ) ( 0 ) A ( ' ) ( ~ )  (5.9) 

which may naturally be called the strong coupling gap equation for the propagator. 
The leading term of the expansion of the propagator A at A +CO is 

A")(x) = Q(S(O))-"~S(X) (5.10) 

with Q being a constant. Note, the tight-hand side of (5.9) does not contain highly 
singular coefficients like S(0): 

(5.11) 

The solution to (5.11) is the renormalized free propagator with the renormalized 

( m 2  -a2 + AA(O))A(x) = aU'6(x ) .  

mass 

fi;en= AA(O)+ m2. 

Here Q plays the role of the renormalization constant of the wavefunction. 
The approximation, described by (5.9), is, in a sense, dual with respect to the 

ordinary gap equation. While the latter reproduces the propagator for A -f 0, equation 
(5.9) is satisfied at A+m. 



Strong coupling expansion for a generating funcrional 1245 

6. Single-mode approximation 

As an illustration to the above constructions, look at the one-mode approximation (or, 
equivalently, the theory with d = 0). In this simplified model, integral (2.1) becomes 
an ordinary two-dimensional integral calculated easily. The result is (v0= m’ at d =0) 

where 

f ( x )  = exp x2 erfc x, 

The Schwinger equation for G is an ordinary differential second-order equation 

dG d2G 
G + ( q  + m’) -= A - 

dq dq” (6.2) 

The solution to this equation is unambiguously fixed by the boundary conditions 

G(0) = 1 (6.3) 

G(oo)=O. (6.4) 

where (6.3) is the normalization condition. As in the general case, condition (6.4) 
cannot be used in any finite order of the SCE due to the polynomial character of this 
expansion. Therefore, in the SCE one should use an additional boundary condition 
like (2.12). So, we see that the problem of boundary conditions for SCE is vital even 
within this simplified model. As the ‘propagator’ in this model we have 

When A - t c o  

A =  A - ~ / ~ A ( * ) + o ( A - ~ )  

where 

A(’)= (2/7r)’’’. 

At A + + O  

A +  l/m2 i fm2>0 

and 

A=-m2/A if mz <o. (6.7) 

In the last case, the corrections are exponentially small. 
Note, the iterative solution of (6.2) in the region of small A will be A = m-’+O(A), 

whatever the sign of m7 might be. As the exact solution shows, for negative values of 
m’ the iterative solution has nothing in common with the true behaviour of the 
propagator. This is an indication of an essential singularity at A = 0. 

Consider now how the self-consistency approximations of the previous section 
within this simplified model. The ordinary gap equation (we call it the weak coupling 
gap equation and denote its solution as Aw) in this model looks like 

1 -m2A,=2AAi. (6.8) 
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Due to the meaning of the weak coupling consistency, out of two possible solutions 
of this equation we should choose the one tending to the iterative solution I/m'at A -t 0. 

(i) m2>0.  One of the solutions fulfills this condition. The ratio of this solution to 
the exact solution (see (6.5)) 

R A  = A,(A)/A(A) 

falls monotonously from 1 to m = 0 . 8 8 6 ,  with A varying between 0 and m. 
(ii) m2<0.  One of the solutions of (6.8) tends to the iterative solution W2 that 

is, however, qualitatively different from the behaviour of the exact solution (see (6.7)). 
At A+m this solution acquires a wrong sign. The other solution at small A behaves 
as -m2/2A, which means that qualitatively its behaviour coincides with that of the 
exact solution. However, it is half as large in magnitude. When A+m, this solution 
has the right sign, and the ratio R, tends to the same limit as in case (i) for the normal 
solution, although from below. 
Tum now to consistency in the strong coupling region. Denoting the corresponding 

propagator as An, write for it the equation 

(6.9) m2As+ AA: = 2 f T. 

(i) m*>O. One of the solutions tends to A-'l2A(') at A -tm. In the interval O< A <CO, 
the ratio 

R,O) = AS(A)/A(A) 

for this solution increases monotonously from 2/7r=0.637 to 1. 
(ii) m 2 < 0 .  This is the most interesting case. The solution, tending at A+m to 

A-'/'A('), behaves as -m2/A when A+0, which means that for this solution Rs+  1 
both in the strong coupling region and at small A. In this case, max %(A) = 1.127 (at 
A,,,=0.556(m2)2), i.e. this solution approximates the exact solution to within ~ 1 3 %  
in the whole range of A and tends to it at both the asymptotic regions. 

Clearly, it is risky to draw far-reaching conclusions for the 'true' field theory from 
the analysis of this toy model. The infinite mass renormalization conceals the 
quantitative effects for d a 2 .  

I. Couclusiou 

The analysis shows that, in order to obtain some results on the basis of the SCE one 
has to sum up this expansion. An example of this summation is the formula for the 
two-particle function derived in section 3. Proceeding from this formula, one can obtain 
the equations for the propagator that are, in fact, a boundary condition. However, this 
formula does not say much about the two-particle function itself. Clearly, to get some 
information about a four-point function, the corresponding formulae for multi-particle 
functions are required. As is known, the Hartree-Fock approximation for the two- 
particle function is a sum of chain diagrams. Further analysis is needed to establish 
the relationship between the Hartree-Fock approximation and SCE for the two-particle 
function. In this connection, it seems interesting to make further investigations of the 
Legendre transformation from the point of view of the strong coupling expansion. 
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